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SUMMARY

The efficiency of indium phosphide (InP) solar cells is limited by its high surface recombination veloc-

ity (_107 cm/s). This might be reduced by a wide-bandgap window layer. In this work we calculated the

performance of InP solar cells with wide-bandgap (1.8 eV) lattice-mismatched Ino.40Alo.eoAs as a window
layer. Because the required window layer thickness is less than the critical layer thickness, growth of

strained (pseudomorphic) layers without interfacial misfit dislocations should be possible. Calculations
using the PC-1D numerical code have shown that the efficiencies of baseline and optimized p+n (p-on-n)

cells are increased to more than 22 and 24 percent, (air mass zero (AM0), 25 °C), respectively for a

lattice-mismatched Ino.40A]o.soAs window layer of 10-nm thickness. Currently, most cell development

work has been focused on n+p (n-on-p) structures although comparatively little improvement has been

found for n+p cells.

INTRODUCTION

The improved resistance of indium phosphide (InP) solar cells to electron (ref. 1) and proton (ref. 2)

irradiations and the prospects for high efficiency (ref. 3) make the InP cells very promising for space

applications. The efficiencies achieved to date are limited by high values of surface recombination velocity

(SRV ~10 7 cm/s), which could be reduced by window layers and proper passivation. The use of suitable
wide-bandgap window layers on gallium arsenide (ref. 4) and silicon (ref. 5) solar cells has resulted in

significant improvements in device performance. Other factors that could improve cell efficiency are

increased minority carrier diffusion length and reduced cell series resistance. This report presents the

predicted results on the effective reduction of SRV with lattice-mismatched wide-bandgap In.0.40Al0.e0As

used as a window layer.

Figure 1 shows the calculated effect of the front SRV on the efficiency of optimized InP solar cells

(refs. 6 and 7). These results indicate that the SRV has a major effect on the cell performance. Because
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n+p (n-on-p) cells have relatively thin emitters (,-,0.02 _m), they are less affected by the SRV than p+n

(p-on-n) cells. Thicker emitters are required in p+n cells to keep the series resistance low.

A recent systematic modeling study (ref. 8) has shown that p+n structures could become more effi-

cient than n+p structures if surface recombination is reduced. This study generated renewed interest in

the study of p+n structures, engaging several research groups in theoretical and experimental work. The

p+n structure could also offer an additional advantage by avoiding the problem of n-type impurity doping

into the base from the substrate (Si, Ge) in n+p structures grown by heteroepitaxy.

APPROACH

Selection of Window Layer Material

The energy bandgap and lattice constant for HI-V semiconducting compounds are shown in figure 2

(ref. 9). Unlike the case of GaAs, where AlxGal_xAs forms a naturally lattice-matched ternary system for
all values of x, wide-bandgap window layers for InP are more constrained. As seen in figure 2, the pos-

sibilities for lattice-matched heteroepitaxial systems for InP are relatively limited. Little experimental

data exist about growth of the ternary compound AIAsSb; however, the ternary compound InxA11_xAs
seems to be quite suitable as a window layer for InP solar cells. At the lattice-matched composition of
x - 0.52, the bandgap is only slightly higher than that of InP. The steep slope of the curve showing

changes in the bandgap with a change in the lattice parameter for InA1As suggests that a significant

increase in window layer transparency could be achieved by only a small deviation in the lattice param-
eter from the lattice-matched value of 5.86 _k.

The use of InxAl I_xAs has been widespread in electronic and optical devices. Most of the work has

been focused on In0.s2AI0.4sAS , which is lattice matched to InP. This resulted in a state-of-the-art per-
formance for several types of optoelectronic devices (refs. 10 and 11); however, no experimental data for

solar cells are available, with the exception of our predicted performance of InP solar cells with lattice-

matched InAIAs (ref. 12). Our work shows that absorption in the InAIAs layer is a significant factor,

because of the small difference in Eg for lattice-matched material. If the constraint of lattice matching can
be removed by the use of strained (pseudomorphic) material, a further increase in performance could be
realized.

Recently, some work has been reported on the growth and use of lattice-mismatched InA1As in fabri-

cating heterostructure field effect transistors (HFET's) (refs. 13 and 14). The approach of growing

strained layers offers freedom to vary the material optical and electronic properties. The growth of thick

lattice-mismatched layers may result in the generation of misfit dislocations attributed to the relaxation

of the strain energy. The misfit dislocations at the interface and their propagation will deteriorate device
performance; however, lattice-mismatched layers grown less than the critical layer thickness will be

strained and are free from misfit dislocations. For a fixed lattice mismatch, the thickness at which misfit

dislocations begin to form is known as the critical layer thickness. The critical layer thickness decreases
with the increase in lattice mismatch. Several theories on critical layer thickness calculations and experi_

mental data on the different heteroepitaxial structures are available in the literature.

For InP (bandgap energy 1.35 eV) solar cells, the optimum choice is an InAIAS layer with the widest

bandgap possible to reduce the light absorption losses. We selected In0.40Al0.e0As for our calculations. In
this composition, the lattice mismatch with InP is -0.77 percent and the bandgap energy is around

1.8 eV. This wide bandgap makes the In0.40A10.e0As layer nearly transparent to the incoming light that is
useful for the InP solar cell.



For a latticemismatch of -0.77 percent,calculationsusing the Matthews and Blakeslee(M-B)

(ref.15) theorygivean estimationof about 13 nm forthe criticallayerthickness,although a more recent

work by Bennett and del Alamo (ref.13) shows that itwas considerablylarger.HFET's with 30 nm of a

strainedIn0.40Al0.60Aslayershowed no degradationdue to mismatch (fig.10(b)ofref.13).Using high-

resolutionx-raydiffraction,itisfound thatfora latticemismatch of _<+1 percent,the crystallinequality

ofthe InAlAs epitaxiallayerremains high to thicknessesfrom threeto ninetimes the M-B criticallayer

thickness(ref.13).

In the calculations reported in this paper, we have considered a 10-nm-thick In0.40Al0.o0As lattice-

mismatched layer as a window, which is less than the critical layer thickness calculated by the most

conservative (M-B) approximation.

Estimation of In0.40Alo.e0As Parameters

Since limited information is available concerning (optical, electrical, physical, and other) properties of

ternary InAlAs material, we attempted to estimate the critical parameters based on InP and lattice-

matched In0.s2Alo.4sAs available literature. The bandgap energy of the strained In0.40Al0.eoAs is 1.8 eV
(fig. 2) and the strained layer lattice constant is 5.815 _k, compared with 5.86 A for InP. A value of

0.294 eV for the conduction-band energy discontinuity has been considered, which is the same as the

lattice-matched InAlAs. The intrinsic carrier concentration, ni for the strained In0.40Alo.e0As was scaled

from the value for InP (8x10 e cm -3 (ref. 16)) using the relation,

n i (In0.40Al0.eoAs) -- n i (inP) exp {- AEg/(2kT))

where AEg is the bandgap difference, k is the Boltzmann constant, and T is the temperature in kelvin.
The optical absorption coefficient of the lattice-mismatched InA1As was assumed to be the same as that
of InP but shifted in wavelength by the bandgap ratio (1.35/1.8). In the calculations, other parameters
were assumed to be the same as those of InP.

RESULTS AND DISCUSSION

We have considered both the baseline and the optimized designs of the InP cells. The baseline cell

design uses material parameters that are representative of the current state-of-the-art InP solar cells. The

optimized cell design assumes improvements in material parameters, which we believe are achievable by

suitable processing improvements. More details about InP cell modeling are available in references 4 to 6.

The design parameters of p+n InP cells used in our calculations are described in table I. The PC-1D

numerical code (ref. 17) was used to calculate the cell current-voltage characteristics and the external

quantum efficiency response with and without the InA1As window. A strained In0.40Al0.60As window
layer with a surface recombination velocity of 107 cm/s was assumed. The window layer doping and diffu-

sion length were assumed equal to the cell emitter values (table I). To avoid heavy doping effects, moder-

ate dopin_s (1018 cm -3) of the window and emitter regions were considered. An optimum base doping of
101 cm- was assumed (refs. 5 and 6). Figure 3 shows the InP cell structure with a window layer.



Current-Voltage Characteristics

Figure 4 shows the calculated I-V characteristics (AM0, 25 °C) of the baseline and optimized cell

using the parameters of table I. This figure also includes the calculated I-V results of the cell with the

lattice-mismatched In0.40Alo.60As window layer of 10-nm thickness. The use of a window layer on the
baseline cell improves the cell's efficiency from 14.7 percent AM0 to more than 22 percent, while the opti-

mized cell efficiency increases from 15.4 percent A_M0 to more than 24 percent. This greater improvement

of the optimized cell is caused by its reduced bulk recombination.

For comparison we calculated the I-V curve of a p+n InP cell with decreased front SRV. A reduction

in the front SRV from 107 to 104 cm/s is necessary to achieve the efficiencies obtained with the 10-rim

window layer. This reduction demonstrates that the window layer is effectively improving the SRV.

Calculations were also performed to study the effect of a lattice-mismatched window layer on the effi-

ciency of n+p InP solar cells. Comparatively little improvement (,,_1 percent) in efficiency was obtained

for these cells. These results can be explained by the large conduction-band energy discontinuity at the

window/cell emitter (InAIAs/InP) interface. This discontinuity acted as an effective potential barrier for

the minority carriers (electrons) of the p+n cell, thereby stopping them from recombining at the surface.
The holes in the n+p cell emitter were not influenced much by the conduction-band energy discontinuity,

which resulted in a less significant reduction in surface recombination.

As discussed earlier, Ino.40Al0.60As layers up to 30-nm thick were grown with high crystalline quality
and HFET's (majority carrier devices) were fabricated without any degradation resulting from mismatch.

We also calculated the p+n cell efficiency for a 30-rim-thick In0.40A10.e0As window layer. The short circuit

current was slightly reduced, but the efficiency remained high, as shown in figure 5. This slight reduction
suggested that the wide-bandgap (1.8 eV) lattice-mismatched window layer was quite transparent to the

incoming light and absorption losses were negligible. However, it was desired to keep the window layer

thickness lower than 30 nm, since this thickness was approximately the maximum allowable thickness

before strained layers gradually changed to unstrained layers by generation of misfit dislocations. Any

dislocations generated in the interface region may greatly affect the solar cell (minority carrier device)

performance. InAIAs layers of 10 nm or thinner can be grown by the molecular beam epitaxy (MBE) or

the metal organic vapor phase epitaxy (MOVPE) techniques.

External Quantum Efficiency

The calculated cell external quantum efficiency response for the baseline and the optimized p+n InP

solar cells in the 300- to 950-nrn wavelength range is shown in figure 6. The cell response was calculated

with and without a 10-nm In0.40A10.e0As window layer. Since the cell external quantum efficiency curve
with a 10-nm window is almost fiat in the 375- to 800-nm wavelength range, these results indicate that

the efficiency improves significantly with the lattice-mismatched window layer, especially in the blue

response.

CONCLUSIONS

The calculated results demonstrated that a wide-bandgap strained InA1As layer is a potential window-

layer material. Pseudomorphic InA1As material that is less than the critical layer thickness is required.

The light absorption loss in the strained InA1As considered was almost negligible.



A 10-nm lattice-mismatched In0.4oAl0._As window layer resulted in significant improvement in the

cell and external quantum emciencies of p+n InP cells. Comparatively little improvement was predicted

for the n+p cells.

The calculations using the PC-1D numerical code were based on extrapolated values of the optical

and electrical parameters of InAlAs using the best available data. In particular, the results were sensitive

to the absorption coefficient and to the conduction-band discontinuity, neither of which was measured for
strained InAlAs. It must be cautioned that better measurements of the basic parameters were necessary

to confirm these calculations. The measurements may have also caused the predicted efficiencies to be

different than what was expected.
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TABLE I.--BASELINE AND OPTIMIZED p+n InP SOLAR CELL

PARAMETERS USED IN THE CALCULATIONS

Solar cell parameter Baseline

Grid shsdowing, percent

Series resistance, fl-cm 2

Two-layer antireflection coating (ZnS/MgF2) ,nm

Emitter

Thickness, #m

Doping, cm -s

Front surface recombination velocity, cm/s

Minority carrier diffusion length, #m

Be.se

Thickness,/_m

Doping, cm -s

Back surface recombination velocity, cm/s

Minority carrier diffusion length, #m

5

0.3

"50/b100

0.15

10 is

10 _

0.5

Optimized

5

0.3

"50/b100

0.15

10 Is

10 7

2

5 5

1017 101_

10 7 10 _'

2 5

"Value for ZnS.

bValue for MgF 2.
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Figure 1 .--_,alculated effect of the front surface recombination velo-
city on the efficiency of optimized indium phosphide solar cells,
(AM0, 25 °C).
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